If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+30X-380=0
a = 1; b = 30; c = -380;
Δ = b2-4ac
Δ = 302-4·1·(-380)
Δ = 2420
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2420}=\sqrt{484*5}=\sqrt{484}*\sqrt{5}=22\sqrt{5}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-22\sqrt{5}}{2*1}=\frac{-30-22\sqrt{5}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+22\sqrt{5}}{2*1}=\frac{-30+22\sqrt{5}}{2} $
| x^2+3x+28=180 | | (4x-2)+40+(9x+62)=180 | | 6/10=a/25 | | 2^(2+x)+2x=5 | | 2^(2+x)+2x=0 | | 6a-30=0 | | 1.25x^2+22.5x-100=0 | | 5x-(2)=2x+1 | | 5+x.10=150 | | 7m-2/3=13 | | 6(6x+14)=192 | | 2(6x+31)=134 | | 1.96=-0.01x(x-100) | | 3(x-60)=90 | | 4(6x+22)=184 | | 4(2x+33)=172 | | 196=-x^2+100x | | 0=-0.01x(x-100) | | 0=-0,01x(x-100) | | 3(3x+21)=99 | | 7(4x+46)=518 | | 5(2x+43)=245 | | 3.4x+1.8x=43.16 | | 6y+4-8y-5= | | 4*25x=800 | | 5(8x+35)=415 | | 8x^2-50x+25=0 | | 3(3x+99)=351 | | 0.23^24–7.2=t | | T=0.23s–7.2 | | 16x-64.5=11x-191.5 | | 14x-17.5=14x-192.5 |